This is a website for an H2020 project which concluded in 2019 and established the core elements of EOSC. The project's results now live further in and

WeNMR suite for Structural Biology?page=1

HADDOCK2.4 basic protein-protein docking tutorial

This tutorial will demonstrate the use of HADDOCK for predicting the structure of a protein-protein complex from NMR chemical shift perturbation (CSP) data. Namely, we will dock two E. coli proteins involved in glucose transport: the glucose-specific enzyme IIA (E2A) and the histidine-containing phosphocarrier protein (HPr).

The structures in the free form have been determined using X-ray crystallography (E2A) (PDB ID 1F3G) and NMR spectroscopy (HPr) (PDB ID 1HDN). The structure of the native complex has also been determined with NMR (PDB ID 1GGR).

These NMR experiments have also provided us with an array of data on the interaction itself (chemical shift perturbations, intermolecular NOEs, residual dipolar couplings, and simulated diffusion anisotropy data), which will be useful for the docking. For this tutorial, we will only make use of inteface residues identified from NMR chemical shift perturbation data as described in Wang et al, EMBO J (2000).

How to apply bioinformatics to metallo-proteins

Table of Contents

• Sequence patterns and protein domains
• MetalPDB and related tools
• Structural Databases
• Structure refinement and protein dynamics

WeNMR suite for Structural Biology

This webpage provides tutorials, videos and lectures about WeNMR services including, DISVIS, POWERFIT, HADDOCK, GROMACS, AMPS-NMR, CS_ROSETTA, FNATEN, STOTON etc.